Today we take another look at the Ryzen chipset and discuss further optimization’s. Memory is always a question that comes up and historically it hasn’t really had an impact for audio, where the bottleneck in performance often ends up being elsewhere in the setup.
Even with the previous generations on Ryzen where the optimal memory advised were around the 2666MHz (first generation) – 3200MHz (second generation) clock speeds and in our own testing moving up from 2666MHz to 3200MHz on either generation didn’t get us any favourable results in audio benchmarking, although it did help for video rendering workloads.
As such, I went with the previous suggested the best memory when testing around launch and AMD has publically outlined that the optimum speed is now 3733MHz with a CAS16 timing as this puts the memory on a perfect 1:1 ratio with the internal Infinity Fabric bus arrangement.
At this point 3733MHz RAM is still not overly common, even more, uncommon is the super low CAS 16 kits. I’ve currently got a 3733MHz pack being shipped to me (although only CAS17) for further testing when it arrives, although I’ll keep that for when I do a full retest in the coming week.
The results I have today is more of a comparison to show some basic gains and at a slightly cheaper price point. Above 3600MHz memory carries a sizable price premium and some of you may be wondering what gains can be achieved at what price points.
To do this testing I’ve got results generated using the 3200 RAM used in the previous testing, 3600 RAM with CAS18 which are the standard packs we use here and then I’ve run the same 3600MHz RAM clocked up to 3733MHz, which in real-terms ended up being around 3725MHz running in Windows.

Stock CPU 3200MHz RAM | Stock CPU 3600MHz RAM | Stock CPU 3725MHz RAM | |
64 | 113 | 115 | 116 |
128 | 118 | 123 | 124 |
256 | 120 | 124 | 126 |
512 | 121 | 130 | 131 |
The DAWBench DSP test gave us some small gains on the 64 buffer and then became much more apparent at larger buffer sizes, where we’re talking closer to 8% at the 512 buffer.

Stock CPU 3200 RAM | CPU Over load Point | Stock CPU 3600 RAM | CPU Over load Point | Stock CPU 3725 RAM | CPU Over load Point | |
64 | 480 | 70% | 500 | 70% | 560 | 75% |
128 | 1680 | 90% | 1740 | 90% | 2060 | 95% |
256 | 2860 | 100% | 2920 | 100% | 3240 | 100% |
512 | 4020 | 100% | 4060 | 100% | 4520 | 100% |
What we can see here is similar small gains moving from 3200MHz to 3600MHz, with it being fairly marginal overall moving up at this level.
Clocking the RAM up towards it’s advised 3733MHz clocks in this instance produced us more notable gains with excess to 10% being seen at most buffer sizes. I’ll also note that that between the 3600MHz and 3725MHz results the memory hole started to disappear as the CPU overload point moved upwards. I suspect and remain hopeful when we see perfectly matched 3733MHz RAM with CAS 16 timings as they’ve advised, that we’ll finally see that performance hole disappear for good.
Given that 3600MHz RAM is only about 10% more costly than 3200MHz then that’s a no brainer of an upgrade, but the jump above that to 3733MHz can easily cost twice as much again depending on the quantity and size of RAM sticks that you need.
I’d expect memory costs to continue to drop over the coming months as no doubt many firms will now be ramping up 3733MHz production over the coming months. Our own provider was also on the back foot, having already killed off their 3733MHz supplies due to a lack of customer interest before the AMD launch, it’s only now that they are rapidly bringing back old lines and looking to flesh out their ranges to support the popular new platform.
In regards to overclocking the advice that AMD put forward early on appears to be very true with faster memory installed. In initial testing, I overclocked the systems and ran 3200MHz memory and saw some solid gains. With the faster memory, we see the same if not better gains and we can also run the CPU cooler at stock.
I did note that I had both an overclocked chip up and running with 3600MHz RAM and the memory performance hole pretty much disappeared completely, but the system wasn’t stable under heavy loads an there is no way you would want to run that in a production environment.
Indeed, it seems that overclocking is more or less impossible when taking the memory over 3200MHz at this time, although given the performance boost we see with the faster RAM this isn’t a complaint. This might even improve in the future as the BIOSes get optimized and better high-speed memory continues to arrive, but it’s very much something to be aware of if buying a machine at this point in the lifecycle.
One thing that the results have left me wondering, especially with the closing of the gap as we approach the 3733MHz optimum is has this always been the case. 3733MHz didn’t exist when Ryzen generation 1 arrived and I’m not even sure if it was a widely available product when Ryzen 2 launched. Even now it carries a rather hefty cost premium and I have to ponder is this simply a case of the memory market catching up to the Ryzen chipset.. has Ryzen so far simply been ahead of its time?
The last bit of testing I’m going to carry out over the coming week is to retest with the information that we’ve picked up since the first look. It’ll now be running stock clocks with the 3733MHz RAM that is shipping to us now and it’ll be running a none hybrid test version that of a freshly expanded test setup.