Tag Archives: PC

The Be quiet! Dark Rock Pro 4 vs Scythe Ninja 5 Shoot Off

In a change from the normal component testing, I’m focusing on the bit you strap on to the CPU today, rather than the CPU itself.  For audio systems, it’s no secret that I tend to favour air cooling over water loops for a few basic reasons, namely water loops add pump noise, move the source of noise from the center to the extremities of the case and tend to require more pressure being generated to cool the more tightly packed radiator fins than you would also tend to need with larger coolers with wider spaced fins.

Of course, water loops are superb for extracting that last 5% – 10% of available performance from any system overclock, but with audio systems, we don’t tend to push it that far due to system noise being of utmost concern in the studio.

For the past couple of year’s the cooler in our most popular X299 tower systems has largely been the Be Quiet! Dark Rock Pro 4. This twin tower cooler features a dual fan solution and offers a superb noise floor when under light and medium loads, whilst still being able to ramp right up when the performance is getting well and truly thrashed.

Recently the Dark Rock 3 series was discontinued and the newer Pro 4 made it to market. As always I’ve tested this in house, and this time I decided to pit it against a most notable challenger.

Scythe coolers have a long history in the low noise cooling segment. Indeed going back in the early 00’s there were few cooling companies with any sort of focus on noise levels. Back then, Zalman was the default go to in this regard for many people but for the true connoisseur of quietness, Scythe was often the secret weapon of choice.

Offering everything for silencing at one point, from coolers and fans, through to drive mounting’s, PSU’s they’ve built a solid reputation over the years. On a personal level, whilst I’ve always been a big fan of their hardware one little thing has driven me insane as a user and that is their lack of TDP capabilities being listed in the specs. Where a firm like Be Quiet! will splash the recommended TDP ratings all over the box, Scythe often is not always quite so forthcoming with this information. 

I mention this because I’ve frankly sidelined them over the years for anything other than a stock configuration on a system, simply as anyone user who overclocks on one might find themselves running out of cooling overhead at a most unfortunate time if they are not careful.

That all said, I would love to see a true winner come from Scythe and in pitting it against the Dark Rock Pro 4 we see it taking on one of the what could well prove to be one of the best low noise / high performance quite coolers out here.

First up, let’s check out the official shots.

Dark Rock Pro 4
Dark Rock Pro 4

 

Scythe Ninja 5 Heatsink
Scythe Ninja 5 Heatsink

I’ve chosen these two to face off, as they are the flagship models from their respective ranges and both are recommended for running on X299 based i7 & i9 systems.

The Dark Rock Pro 4 is a good £20 more expensive than the Ninja and there is, in fact, another Be Quiet! model around the same price of the Ninja but that is a single fan unit and rated to only 200 TDP as opposed to the 250 TDP. The Ninja as is common with Scythe isn’t officially rated although it does support the i9’s at around 165W TDP with ease, so our question here is how much further can it go beyond that? 

So, on with testing and let’s start at the beginning with mounting the coolers. Be Quiet! has a bit of a mixed reputation for its mounting schemes ranging from pretty sensible to awkwardly bonkers and Scythe in past years have certainly had some moments too.  So, with that in mind, the process for fitting both of these coolers is almost boringly simple.

Scythe Ninja 5 Mounting Bracket
Scythe Ninja 5 Mounting Bracket

 

Be Quiet! Dark Rock Pro 4
Be Quiet! Dark Rock Pro 4

There really is very little to separate them here as both of them have very similar X299 bracket mechanisms. You insert 4 x 2 ended screws into the CPU socket corners, place the bracket over it and then screw down some thumb screws to lock it in place. It’s a well-proven design and very, very quick to install for any user, no matter your experience level.

Now the tricky part of this design, however, is rarely the bracket itself, rather how the cooler mounts to it. Previous Dark Rock Pro models would often ship with a special spanner and you used to have to slide your hand under the cooler in order to get to the screws. Whilst it worked, it was sometimes a little awkward, even when working on a desk, needless to say trying to do the same job with everything installed into a case could prove to be rather frustrating.

The Ninja 5 avoids all of this by carefully designing the cooler to leave access gaps for the screwdriver to feed through. 

Scythe Ninja 5 with screwdriver access
Scythe Ninja 5 with screwdriver access

It’s a quick and easy design to fit and as you can see, with the included screwdriver an absolute cinch to get in there.

And then you pull the other cooler out of the box and see this…

Dark Rock Pro Top Shot
Dark Rock Pro Top Shot

Hmmm… the initial thought that went through my head (and possibly anyone reading who’s dealt with a number of larger coolers before) was one of “great, more fiddly mountings to try and deal with”.

However, this cooler has an interesting trick up its sleve.

Dark Rock Pro 4 Screws Removed
Ta daaaa!

Yes, two of those heat pipe caps are fake and unscrew, giving full access to the mount securing screws. A simple change, but one that will save an astounding amount of potential aggravation for the end user. 

But form aside, let’s talk about some function and just exactly what’s going on with some benchmarking. 

Dark Rock Pro 4 - Stock clock test
Dark Rock Pro 4 – Stock clock test – Click to Expand

The first test is the stock clock test on the Dark Rock Pro 4. We see after 30 mins a rough average of around 60 degrees across the cores. 

Ninja 5 stock test resize
Ninja 5 – Stock Clock test – Click to Enlarge

The Ninja doesn’t quite match up to the Be Quiet! at this point, although overall it holds it’s own with 70 degrees as a max not being all that terrible, it’s certainly not quite up to the Be Quiet! the performance we saw in the first test.

Following on from those I thought I’d retest the temps and try again with a bit more of a workload to cope with. I tend to advocate running CPU’s at their single core max turbo, as it normally tends to be a simple and rather straightforward overclock to carry out, assuming you have capable enough cooling to work with.

Dark Rock 4 overclock test
Dark Rock 4 – overclock test @ 4.3GHz

In this one, the Dark Rock still holds it’s own. A few of the tests in the sequence do bounce off the 90 degrees mark, which is still a good 10% below the throttle point. Otherwise, it does carry itself fairly well, given that we’re running the FPU testing component here and that will tend to elevate heat levels with mid 80’s being seen as the occasional peak, but otherwise, it spent a lot of the time around the 70 degrees level which is acceptable.

Ninja 5 - 4.3GHz Overclock test
Ninja 5 – 4.3GHz Overclock – Click to expand

Here we see where the Ninja proves to be a little weak in its performance handling. The test red lined for me almost instantly once I hit start, with a few of the cores bouncing off the 105 throttle limit over the course of the 30 min test.

But… this is only half the story for us audio system owners!

Noise is, of course, a major factor with both coolers being supplied with a promise of being super quiet, but have we really got a winner in that regard too?

I grabbed a basic sound meter and headed into our demo space here. The room whilst treated is still very much a demo space rather than a dedicated studio. We do get an average reading of a 36db noise floor in there at the time of testing which means it’s certainly as quiet or quieter as the average rehearsal space.

I measured in two positions for this whilst each cooler was under load. Position 1 had me set the mic on the GPU cooler about 2″ from the cooler. Position 2 had the mic pick up sat 0.5 meters away from the cooler. In both instances the mainboard & cooler is sat on my test bench with no case around it,  so keep in mind any result I’ve recorded here will be further muted once it’s entombed into a fully built system.

  Stock Clock 4.3Ghz Overclock
Dark Rock Pro 4    
2 inches away 44 47
Half Meter away 36 37
Ninja 5     
2 inches away 38 42
Half Meter away 36 37

As mentioned already the room noise floor is 36db.  As we can see above the Ninja 5 comes up trumps in this test when we get up close and personal, there is a clear 5db difference between the two units.

However, at half a meter it’s a different story with both coolers only just being picked up by the mic when running under the overclocked profile and sitting below the noise floor on the standard profile. I dare say we’ll not be seeing many users working closer to the cooler than half a meter and even so, with the case around it I would expect any trace noise to be completely masked. 

So, is it a draw for noise levels?

Not quite.

What the chart doesn’t show is that under more intense test cycles on that overclock profile, the Be Quiet will ramp up to a more noticeable level. The Ninja cooler is running a pair of fans that are limited to 800rpm and the figures you see above are the fans hitting their full tilt.

The Be Quiet! fans are rated to 1200 & 1500 rpm and it does give them some additional overhead to play with, but that does translate to some extra noise. 

Ultimately the difference in fan speeds explains where the better overclocking results come from in testing. At the point we see the Ninja 5 fail to keep up, the Be Quiet! cooler will then proceed to kick it up a gear to ensure everything runs smoothly. It does however become noticeable as far as an increase in noise levels go at that point. It’s not a vast difference and anyone who keeps their system down the side of the desk is unlikely to notice any difference, but for any users running a PC on the desk, well, you might want to stick with the Ninja when all is said and done. 

So, the outcome of this test just to recap depends on what you want to achieve.

Do you want the quietest system possible with an i9 in it?

Grab the Scythe.

Do you want to overclock that system and don’t care about a little background hum when you’re pushing the machine to its limits? 

Then the Be quiet! is for you.

Both are astoundingly good coolers, they’re just suitable for slightly different workload profiles depending upon your needs. 

All 3XS Audio Workstations @ Scan

AMD Ryzen First Look For Audio

Ryzen is finally with us and it is quite possibly one of the most anticipated chipset launches in years, with initial reports and leaked benchmarks tending to show the whole platform in very favourable light.

However when it comes to pro audio handling we tend to have different concerns over performance requirements, than tends to be outlined and covered by more regular computer industry testing. So having now had a chance to sit and work with an AMD 1700X for a week or so, we’ve had the chance to put this brand new tech through some more audio-centric benchmarking, and today we’ll take a first look at this new tech and see if its right for the studio.

AMD has developed a whole new platform with the  focus based around  improving low level performance and raising the “IPC” or Instructions per clock cycle figure. As ever they have been keen to keep it affordable with certain choices having been made to keep it competitive, and to some extent these are the right choices for a lot of users.

Ryzen Chipset Features

The chipset gives us DDR4 memory but unlike the X99 platform restricts us to dual channel RAM configurations and a maximum of 64GB across the 4 RAM slots which may limit its appeal for heavyweight VSL users. The is a single M.2. connection option for a high speed NVMe drive and 32 lanes for the PCIe connections, so the competing X99 solutions still offer us more scope here, although for the average audio system the restrictions above may offer little to no real downsides at least from a configuration requirements point of view.

One thing missing from the specification however that has an obvious impact in the studio is the lack of Thunderbolt support. Thunderbolt solutions require BIOS level and physical board level support in the shape of the data communication header found on Intel boards, and Thunderbolt itself is an Intel developed standard along with Apple backing. Without either of those companies appearing to be keen to licence it up front, we’re unlikely to see Thunderbolt at launch although the little to say that this couldn’t change in later generations, if the right agreements can be worked out between the firms involved.

Early testing with the drivers available to us have so far proven to be quite robust, with stability being great for what is essentially a first generation release of a new chipset platform. We have seen a few interface issues regarding older USB 2 interfaces and USB 3 headers on the board, although the USB 3 headers we’ve seen are running the Microsoft USB3 drivers, which admittedly have had a few issues over on the Intel boards with certain older USB 2 only interfaces so this looks to be constant between both platforms. Where we’ve seen issues on the Intel side, we’re also seeing issues on the AMD side, so we can’t level this as being an issue with the chipset and may prove to be something that the audio interface guys can fix with either a driver or firmware update.

Overclocking has been limited in our initial testing phase, mainly due to a lack of tools. Current windows testing software is having a hard time with temperature monitoring during our test period, with none of the tools we had available being able to report the temps. This of course is something that will no doubt resolve itself as everyone updates their software over the next few weeks, but until then we tried to play it safe when pushing the clocks up on this initial batch.

We managed to boost our test 1700X up a few notches to around the level of the 1800X in the basic testing we carried out, but taking it further lead to an unstable test bench. No doubt this will improve after launch as the initial silicon yields improve and having not seen a 1800X as yet, that may still proved to be the cherry picked option in the range when it comes to overclocking.

One of the interesting early reports that appeared right before launch was the CPUid benchmark result which suggests that this may shape up to be one of the best performing multi-core consumer grade chips. We set out to replicate this test here and the result of it does indeed look very promising on the surface.

Ryzen 1700x CPU id results

We follow this up with a Geekbench 4 test, which itself is well trusted as a cross platform CPU benchmark and in the single core performance reflects the results seen in the previous test with it placing just behind the i7 7700K in the results chart. The multi-core this time around whilst strong looks to be sat behind the 6900K and in this instance sitting under the 6800K and above the 7700K.

GeekBench 4 AMD 1700X

So moving on to our more audio-centric benchmarks and our standard Dawbench test is first up.  Designed to load test the CPU itself, we find ourselves here stacking plugin instances in order to establish the chips against a set of baseline level results. The AMD proves itself strongly in this test, placing mid-way between the cost equivalent 6 core Intel 6800K and far more expensive 6900K 8 core. With the AMD 1700X offering us 8 physical cores along with threading on top to take us to a virtual 16 cores, this at first glance looks to be where we would expect it to be with the hardware on offer, but at a very keen price point.

Ryzen DPC Test

I wanted to try a few more real world comparisons here so first up I’ve taken the Dawbench test and restricted it to 20 channels of plugins. I’ve then applied this test over each of the CPUs we have on test, with the results appearing under the “Reaper” heading on the chart below.

Sequencer AMD 1700X

The 1700X stands up well against the i7 7700k but doesn’t quite manage to match up with Intel chips in this instance. In a test like this where we’re not stressing the CPU itself or trying to overload the available bandwidth, the advantages in the low level microarchitecture tend to come to the fore and in this instance the two Intel chips based around the same platform perform roughly in line with each other, although in this test we’re not taking into account the extra bandwidth on offer with the 6900K edition.

Also on the same chart we  see two other test results with  one being the 8 Good Reasons demo from Cubase 8 and we tried running it across the available CPUs to gain a comparison in a more real world project. In this instance the results come back fairly level across the two high end Intel CPU’s and the AMD 1700X. The 4 core mid-range i7 scores poor here, but this is expected with the obvious lack of a physical cores hampering the project playback load.

We also ran the “These Arms” Sonar demo and replicated the test process again. This tests results are a bit more erratic this time around, with a certain emphasis looking to be placed on the single core score as well as the overall multi core score. This is the first time we see the 1700X falling behind the Intel results.

In other testing we’ve done along the way in other segments we’ve seen some of the video rendering packages and even some games exhibiting some CPU based performance oddness that has looked out of the ordinary. Obviously we have a concern here that the might be a weakness that needs to be addressed when it comes to overall audio system performance, so with this result in mind we decided to dig deeper.

To do so we’ve made use of the DAWBench Vi test, which builds upon the basic test in DAWBench standard, and allows us to stack multiple layers of Kontakt based instruments on top of it. With this test, not only are we place a heavy load on the CPU, but we’re also stressing the sub-system and seeing how capable it is at quickly handling large complex data loads.

DAWBench Vi

This gave us the results found in the chart above and this starts to shine some light on the concerns that we have.

In this instance the AMD 1700X under-performs all of the Intel chips at lower buffer rates. it does scale up steadily however, so this looks to be an issue with how quickly it can process the contents of a buffer load.

So what’s going on here? 

Well the other relevant information to flesh out the chart above is just how much CPU load was being used when the audio started to break up in playback.

AMD 1700X 3.8 @ GHz

64 = 520 count @ 70% load
128 = 860 count @ 72% load
192 = 1290 count @ 85% load

Intel 6800k 3.8 @ GHz

64 = 780 count @ 87% load
128 = 1160 count @ 91% load
192 = 1590 count @ 97% load

Intel 6900k 3.6 @ GHz

64 = 980 count @ 85% load
128 = 1550 count @ 90% load
192 = 1880 count @ 97% load

Intel 7700k @ 4.5GHz

64 = 560 @ 90% load
128 = 950 @ 98% load
192 = 1270 @ 99% load

So the big problem here appears to be inefficiency at lower buffer rates. The ASIO buffer is throwing data at the CPU in quicker bursts the lower you go with the setting, so with the audio crackling and breaking up it seems that the CPU just isn’t clearing the buffer quickly enough once it gets to around 70% CPU load at those lower 64 & 128 buffer settings

Intel at this buffer setting looks to be hitting 85% or higher, so whilst the AMD chip may have more RAW performance to hand, the responsiveness of the rest of the architecture appears to be letting it down. It’s no big secret looking over the early reviews that whilst AMD has made some amazing gains with the IPC rates this generation they still appear to be lagging slightly behind Intel in this performance metric.

So the results start to outline this as one of the key weaknesses in the Ryzen configuration, with it becoming quite apparent that the are bottle necks elsewhere in the architecture that are coming into play beyond the new CPU’s. At the lower buffer settings the test tends to benefit single core performance, with the Intel chips taking a solid lead. As you slacken off the buffer itself, more cores become the better option as the system is able to spread the load but even then it isn’t until we hit a 192 buffer setting on the ASIO drivers that the performance catches up to the intel 4 Core CPU.

This appears to be one section where the AMD performance still seems to be lacking compared with the Intel family be that due to hardware bottle necks or still not quite having caught up in the overall IPC handling at the chipset level. 

What we also see is the performance start to catch up with intel again as the buffer is relaxed, so it’s clear that a certain amount of performance is still there to be had, but the system just can’t access it quickly enough when placed under heavy complex loads.

What we can safely say having taken this look at the Ryzen platform, is that across the tests we’ve carried out so far that the AMD platform has made some serious gains with this generation. Indeed the is no denying that the is going to be more than a few scenarios where the AMD hardware is able to compete and will beat the competition.

However with the bottlenecks we’ve seen concerning load balancing of complex audio chains, the is a lot of concern here that it simply won’t offer the required bang per buck for a dedicated studio PC. As the silicon continues to be refined and the chip-set and drivers are fine-tuned then we should see the whole platform continue to move from strength to strength, but at this stage until more is known about those strength and weaknesses of the hardware, you should be aware that it has both its pros and cons to consider.

The Full Scan 3XS Pro Audio Workstation Range

Native Instruments Traktor Kontrol Z1

The Native Instruments Traktor Z1 is the ultimate, stick-it-in-yer-bag portable addon for Traktor users, both on PC and Mac, but also for Traktor DJ on iOS.

Fully compatible with all of the versions of Traktor, this unit is very similar to the Traktor S2 mixer section. Featuring the same faders and knobs as the S2 and S4, this really opens up the use of iOS Traktor App for iMac and iPhone (yes, it is even reported to work with iPhone too!)  “more than a bit of fun messing about” usage.  Not only does it give you a true stereo output and stereo headphone cue for iOS, it’s also an ultra-portable solution to anyone with its partner X1 or F1 controller for PC and Mac.

http://www.native-instruments.com/en/products/traktor/dj-mixer/traktor-kontrol-z1/

Pioneer XDJ Aero – Hands on Demo Video inc. Rekordbox Mobile App

The Pioneer XDJ Aero is an excellent new Wireless DJ controller and this week we’ve had a visit from thier chief demonstrator Rob Anderson, who took us through the many features including the use of the Rekordbox APP for Android and Apple smartphones and Tablets, as well as Windows PC’s and Mac.

We were extremely impressed by the build quality and slick operation of the Pioneer XDJ Aero, although it does “stream” from wireless authorised devices running the Rekordbox app, it has a 10 minute buffer, as well intelligently automatically using the bpm (set in rekordbox) to put the track into a 4 bar loop, if the worst happens, if your mobile device runs out of battery  and it does run out of tunes!

The build quality of this device was fantastic, with a welcome return to the solid metal cue and start buttons that CDJ users will be used to, as well as solid metal, touch sensitive platters.

The mixer is switchable between standalone and wireless mode and is exactly what you would expect from pioneer’s top level of equipment, solid, smooth and built for the heaviest level of fader abuse that you could possibly manually throw at it! One really nice feature was the lockable fader caps, to stop the frequent “flying fader” effect, where after some energetic movements, the caps shoot halfway across the dancefloor, leaving only little metal stumps for the next DJ.

The idea behind the Rekordbox app is that you can sort out and beatgrid, cue and edit information for your tunes on the go.

I found this a MAAASIVE plus point, as there’s many times whilst stuck on many forms of transport, that i really wished that i could sort my tunes out quickly, this does not only do that, but also allows you to stream directly to the unit to mix the tracks.

I can see the Pioneer XDJ Aero as the perfect home practice tool for people who use CDJ-2000’s in clubs, and currently move thier library about on USB pendrive. This controller definatly sits alone with a unique way of working that will be incredibly attractive to users who embrace modern technology and methodology.

Pioneer Dj Gear @ Scan

 

Choosing A Custom PC For Music Production

The requirements of a PC for music production.

So you’ve decided to power your studio with a new PC for music production but where do you start with it? Why exactly would you choose to build your own music PC or order a custom system over a standard off the shelf solution?

To answer that we have to distil the requirements of what is required from a music PC system and we find that for most people the 3 key requirements are stability, performance and silence.

Stability is an obvious must for a production studio music PC. The is nothing worse than being in a recording session and watching a few hours of your bands performance or the last hours worth of sound design disappearing into the digital ether because of a system being overloaded and rebooting whilst being pushed a bit too hard.

Performance in the audio system field always comes down to “more is more” and more power under the hood of your production system will result in more plug ins, more audio channels and more options when you are recording and mixing your music in the studio.

This leaves us with the third requirement which is silence. If you’ve ever tried recording in a space which has a noisy music PC  nearby and it’s fans have been screaming away then it’ll no doubt make recording music a very tricky process as those sensitive mic’s tend to pick up this type of irritating background noise. Also when your mixing down you need to be fully focused on the mix, and having a low level background noise will clutter up the frequencies you perceive which in turn will make getting the levels right far harder than it needs to be.

The three all balance themselves out when trying to build the perfect recording and editing music PC and should be thought about carefully if your building yourself.

Overclocking and getting the most from your music PC.

With the last few generations of CPU’s overclocking has moved out of the enthusiasts market segment and become almost de rigueur for those wishing to get their moneys worth from any new production studio setup and whilst it’s hard to argue against this course of action when even Intel and AMD have started to use this as a feature when marketing their CPU’s, it is however important to consider the consequences and how it’ll trade off against the other two factors in our music PC production system trinity.

If we look at the benchmark’s we have produced here we see that over clocked performance can lead to 30% or more performance boosts on the current generation music PC setups over stock scores even at reasonably safe levels of pushing the audio production system. You tend to find that when overclocking you have a fair amount of headroom before you have to start raising the voltages from stock levels which is where the problems arise. Indeed you may even find that at stock speeds you may be able to drop the voltage levels the system uses whilst it’s running which can prove quite worth while.

Why is that?

Heat.

Heat is the result of increased performance and in turn it affects both stability and silence. Run more voltage through the setup and the music computer system runs hotter, although if you can run with less voltage you’ll find the reverse and less heat being generated. Most music computer system setups will tend to have a sweet spot where the CPU will run on still fairly close to stock voltages whilst still being nicely over clocked but should you attempt to push it even 1% past this sweet spot you’ll need a large jump in voltages to hold it steady, which will in turn cause more heat and either make your music PC very noisy as the fans ramp up or a loss in performance as it overheats and throttles the chips back.

Consider the whole system when choosing parts.

So stability and overclocking aside choosing a good selection of components in a audio production system can be a very wise move. We’ve all seen computer systems where corners have been cut and BSOD’s tend to occur and the PC platform can be a bit notorious for this but it can be avoided. Careful research of the components being used in a music PC system can ensure less headaches down the road and it’s never wise to cut corners in these regards.

In fact just as an example its the parts that people don’t tend to think about that can have the most impact and one of the most overlooked one’s can be the PSU which is pretty much the key to a good stable audio system having a long trouble free working life. PSU’s vary wildly in price even at the same overall performance levels and research is highly advised because that cheaper unit might be noisy, or worse it might not have stable voltages on the rail supplying your motherboard or sound card solution meaning at best they might hang randomly or at worse even burn out from fluctuations. Good motherboards and PSU’s will regulate the power well and have more protection built in but these will cost extra, although the first time you see a £30 PSU burn out half a PC from a power spike you suddenly realize that the £70 investment in a PSU unit that would have had an protection circuit or two to protect everything else wouldn’t have been such a bad idea after all.

So this takes us onto the silence part of the equation. This can be ignored to some degree if your lucky enough to have a isolation cupboard for the music system, or even able to position it in another room away from your recording and mixing setup.

This however can be a critical factor for those who are not so lucky although the good news is that with a bit of thought and planning you can put together a music PC system that isn’t going to ruin your working environment. Choosing a case with a good effective front to back air flow can help a lot and the are many quiet options available now with good solid construction and sound proofing as standard.

Choosing your fan selection well with a trade off between sound levels and air pressure being the foremost concern can mean the difference between whisper quiet and screaming annoyance so once again it’s very important to read up on your options before choosing a final audio system specification. You have to bare in mind at this point that overclocking add’s heat and heat will cause instability if left unchecked which can be a reasonable arguement not to overclock music PC’s that need to be simply fitted and relied on to work day in and day out. Faster fans solve this issue but cause more overall noise so getting the sweat spot between the 3 is the key to getting the most out of your new studio PC.

In fact if your building your own music production system then good research is the key and the are many great sites out there to guide you through the process of selecting, building and even trouble shooting your new studio PC. That said even if you go and purchase a custom audio PC solution it’s worth researching the parts going in the music system yourself so that your aware of any potential issues that may exist with the kit already in your recording studio setup.

We test and develop our solutions here with all this in mind, so wheather your looking to spec up and purchase a new audio production system or even build your own you can speak to us and we can advise you on the best solution for your requirements if your buying parts to self build or tailor a complete music system solution that is right for you.