Tag Archives: i9

Intel’s i9 9900K and the Coffee Lake refresh.

Coffee Lake has been with us now for just over a year and it’s been a rather turbulent period for Intel. AMD’s continued gains over the last 12 – 18 months has marked a change in the marketplace and the first generation Coffee Lake launch perhaps felt a little rushed last time around, especially as Intel was attempted to respond to the opening volley in the now ongoing CPU wars.

This time around I find myself looking over the selection of chips in front of me and the key question on my mind right now is one of “have they managed to extract the platforms potential this time around?”

So, I’ve got 3 different models here all new to the Intel mid-range:

1. The new flagship in the form of the 8 core  + Hyper-threading i9 9900K running at 3.6 with a turbo clock of 5GHz out of the (oddly) shaped box.

Chip is being run at all core 5GHz

2. The i7 9700K featuring 8 cores but no Hyper-Threading. The chip is clocked to 3.6GHz and 4.9GHz out of it’s rather more normally shaped box.

Chip is being run at all core 4.9GHz

3. Lastly the 9600K in another boring box. 6 cores, no Hyper-Threading and 3.7GHz with 4.6GHz on the turbo.

Chip is being run at all core 4.6GHz

So, we see some firsts here and some repositioning in the range. The i9’s go mainstream and in this case, we’re seeing a few notable key differences there. The big one is that it’s the first time we’ve seen Intel put out an 8 core mainstream chip. Given we only got our first mainstream 6 core back on the last range refresh, it’s good to see them again being pushed into cramming more value onto the die this time around.

The i9’s are also promising us solder under the heat-spreader this time around, rather than the paste found in models elsewhere in the range, so this should in theory help with overclocking for those wishing to push them a bit more.

The i7 & i5 models this time around are limited to 8 cores and 6 cores respectively with no hyper-threading. Whilst it helps to differentiate between the respective ranges, it is going to come as a bit of a shock to anyone used to the current i5/i7 naming convention. On first thought, we wondered it this meant that we could expect the new 8 core with no HT to be outperformed by the older 6 core + HT models or not, although this could very well come down to specific workloads.

Hyper-Threading by its very nature is based around stealing unused clock cycles to get more work done, so if your workload is already thrashing the CPU, then having Hyper-Threading isn’t really going to have much of an impact. In previous testing I’ve tended to note anywhere between 20% and 60% gains with it turned on depending upon the software in use, so it could be argued that having an extra 2 real cores, could equate to somewhere in the region of 4 or even more lost Hyper-Threads (once again, workload permitting) and we’ve also got to consider clock and IPC gains here, so playing off the 9600K & 9500K’s against their  predecessors are going to be certainly interesting.

So lets get down to it.

9600K Benchmarked in CPU-Z
i5 9600K Benchmarked in CPU-Z – Click to expand
9700k Benchmarked in CPUz
i7 9700K Benchmarked in CPU-z – Click to expand
i9 9900X Benchmarked With CPU-z
i9 9900K Benchmarked With CPU-z – Click to expand
i5 9600X - Geekbench - 4.6GHz
i5 9600K – Geekbench – 4.6GHz
i7 9700K - Geekbench - 4.9GHz
i7 9700K – Geekbench – 4.9GHz
i9 9900X - Geekbench - 5GHz
i9 9900K – Geekbench – 5GHz

All the standard tests to start with and nothing unusual going on so far. Whilst they are all clocked fairly close together as far as the cores go, you can note differing amounts of L3 cache on each of the chips, which is no doubt going to help a little in both the single and multi-core benchmarks.

DAWbench SGA Classic DSP Test
DAWbench SGA Classic DSP Test – Click To Expand

So on with the DAWBench SGA DSP Test and we can see the 3 new chips in Yellow above. Starting with the 9600K the obvious comparison here is against its predecessor and frankly, it’s a little underwhelming with a somewhere between a 1% – 10% increase depending upon the buffer in play and scaling upwards as the buffer size is increased.

The 9700K is next and we get to compare its new design configuration of 8 true cores and no Hyper-threading, which also appears to come off poorly here when compared against the older 8700K with the results showing up a 20% – 40% drop off against Intel’s own previous generation class leader.

The loss of Hyper-threading here really looks to have impacted the testing on the new generation at least under the DAWBench classic test. I do get the thought process here with the chip design itself, as the largest new segment in recent years that seems to have captured the marketing teams imagination has been the rise in content creation users who are live streaming. True cores for that sort of content generation is far more beneficial, especially gamers who wish to live stream at the same time, so I fully understand this design choice, in fact it could be argued that this style of chip would be preferential for anyone working live but for anyone looking for raw performance in the studio it’s all a bit disappointing so far.

The flagship here, however, is no longer the i7 model, but rather the i9 9900K and it’s at least here where things are making rather more sense. It’s the first time that we’ve seen an 8 core in Intel’s mid-range line up and looking at the result above, it looks to have settled itself just above the 7820X from the Intel Enthusiast range (X299) and to be fair, on paper at least it makes perfect sense that it would replace that chip.

It’s the same core count, a few generations newer and clocked higher, so it was always going to be a contender, what it does mean, however, is that once again we see one of Intel’s mid-range chips start to cannibalize their own enthusiast class of chips. In fact, we’ve now reached the point where the lower end i7 enthusiast class has had a dearth of releases over the last 15 months and largely been killed off, wherein the same period AMD has successfully taken a sizable bite out of that part of the market space too and we see them continue to take advantage of Intel’s lack of new competing models.

Indeed, in the chart here sat above it, we see the large core count AMD’s as well as the older generation i9’s outlining exactly what this test is good at, which is small files being spread efficiently over the all the  available processing space and honestly, the results here once again don’t really give us any surprises as to how and where the chips are being positioned in the range.

Dawbench Vi Kontakt Test Chart
Dawbench Vi Kontakt Test Chart – Click To Expand

Switching over to the DAWBench VI Kontakt based test we see a more interesting picture as the higher single core clocks appear to give us a welcome boost here. In the one thing, it does really outline for us here is that the Kontakt handling looks to benefit from IPC figures all around.

Having the dedicated cores looks to help when working at tighter ASIO buffer settings on both the 9600K and 9700K, although we can see that this benefit disappears on the 9700K once we slacken that setting off to around the 256 buffer. It appears at this point that the Hyper-threading on the older 8700K finally gets a bit of room to breath and flex it’s stuff once you open up the buffer far enough and this in itself is interesting information.

Thinking about this from a live point of view where you’re aiming for the tightest RTL score and quite likely to be making use of Rompler style libraries, this does outline that going with these new chips that feature all real cores might well pay off for you in this situation. However, if you’re working in the studio, the loss performance at the larger buffer settings, at least in comparison with the older generation might once again prove a little perplexing. 

Taking a look at the i9 9900K by comparison and it starts to make more sense again, with it doing rather a good job at once more making the older 7820X chip irrelevant. There is less challenge up this end of the chart from the red team largely due to the lack of solid benchmarks obtained in the last round which you can catch up on if you hit the link. 

What this means is that the options here do seem to be becoming even more divided. It’s been pointed out that the higher latency jobs that the Zen chips were excelling at are applicable to all sorts of media editors still and with each additional chip it becomes ever more clear that these continue to remain very scenario dependent, and that Kontakts way of working tends to favour highly clocked cores and larger IPC figures over the workload being spread out over more numerous but slower cores.  

Before I round up I just want to throw out a couple of additional charts. I didn’t get a chance to do it with all of them, but I did record the i9 9900K at both stock and at the all core overclock, largely so you can see the difference it can make by setting it to the all core turbo.

i9 9900K DB4 all core
i9 9900K DAWBench DSP – All Core Turbo Test  Click To Expand
i9 9900K DAWBench Kontakt - All Core Turbo Test
i9 9900K DAWBench Kontakt – All Core Turbo Test – Click To Expand

Depending on the test and buffer size it’s up to around 8% in these benchmarks, although this can grow as you use more complex chains of processing in your projects. A chip is only really as strong as it’s the weakest core, as once you max out any given core you begin to run the risk of audio artefacts creeping in.

I mention this specifically with the i9 9900K as a lot of premium boards have been shipping with 5GHz profiles now for a few years and it’s rather easy to hit the results I’m showing above with a halfway decent cooler solution. Above that, you’ll probably want to move to a water cooler solutions with 5.2GHz looking to be the target for anyone wanting to really drive it.

I’ll also note that the i7 9700K was running comfortably just below 80 degrees by the time I all core turbo’d  it, whereas the i5 9600K was sitting nicely around the 60 degrees mark even with Prime 95 absolutely thrashing it, so I reckon for anyone wanting true cores only, you might have quite a chunk of headroom there to play with if you want to tinker with it.

So, overall, what are my final thoughts?

The i5 9600K and i7 9700K both feel like a step backwards for our part of the market to a degree. Sure, they have some strengths and I’ll come back to the example of low latency machines for live use again being a prospective user base, but their value proposition in comparison to other chips already out there is where it really falls over in the studio.

Having a sideways move in the overall performance is a little disappointing but we’re seeing an initial street price on the i7 9600K of around £350 against the i5 8600K historical showing of around  £250. Similarly the 8700K was around £350 for most of its lifecycle and the 9700K sits at £499 at launch, so we’re seeing price increases with each of those ranges, although I suspect as supply catches up with the initial demand we may find some price realignment over the coming months and I wouldn’t be all that surprised to see the new chips reflect older price points once the market stabilises. This is a fairly common occurrence with any new chip release, but admittedly it leaves me feeling a rather underwhelmed given all I’ve discussed already from a performance point of view.

The i9 9900K, on the other hand, replaces the 7820X which spent most of its lifecycle between £400 – £500 in the UK and the i9 9900K has landed at £599. Assuming it’s going to drift over the coming months we’re still essentially looking at £100 mark up over the older model.

The DAWBench classic test here shows us mixed gains depending upon the workload and it’s up against the AMD’s which manage to still outperform it within this test. By contrast, the DAWBench VI test flips it with it outperforming the chips on the chart and keeping in mind the Threadripper results previously. 

So, does even the i9 9900K make sense? Well, yes, it’s the one that really does here. With the change to the Z390 platform, we see a cost saving over the older X299 platform complete with a more advanced feature set. With the cost differences between boards often totalling and surpassing the £100 amount, the overall cost of going with an i9 9900K over an i7 7820X looks to come out in the i9’s favour and that’s before considering the performance gains it offers.

The additional good news here is that the other previous sticking point with the Z390 platform for some users is it’s restricted memory capabilities, as the four slots could only handle a maximum of 64GB. We’ve seen an announcement recently however that they are going to start offering double stacked DIMM’s over the coming months to support this platform, so hopefully, it shouldn’t be all that long until these boards can handle 128GB as well.

Overall this feels like Intel’s real response to AMD’s advances last year although given the swift execution and release of the second generation Zen chips, perhaps they are still a tad on the backfoot here. It’s kinda where Coffee Lake should have been last time around and it’s of course good to see more power in the mid-range. It does leave me questioning where exactly it’s going to leave the enthusiast class, as anything less than an i9 on that platform is going to prove to be poor value at this point and given the age of that platform I really can’t help but hope that the next Intel enthusiast platform can’t be all that far off now.

It feels like this is the repostioning that Intel needed to happen to put it’s own range back into some context, but it may not prove to be the change that everyone was looking for, at least in our small corner of the market.

At the very least here the i9 9900K emerges as a rather strong contender for us audio users and I suspect any other i9 based refresh over the coming months is going to make this all make a whole load more sense when the dust settles. But with AMD already promising updates to its own platform and announced tweaks for their memory balancing promised over the next few weeks Intel may have to work even harder over the coming months.

All DAWBench Testing

Audio Workstation Systems @ Scan

Intel i9 7940X & 7960X Dawbench Testing.

Today we have a few more models from the Intel i9 range on the desk in the shape of the 14 core 7940X and the 7960X. I was hopeful that the 18 core would be joining them as well this time around, but currently, another team here have their hands on it so it may prove to be a few weeks more until I get a chance to sit down and test that one.

Now I’m not too disappointed about this as for me and possibly the more regular readers of my musings, the 16 core we have on the desk today already is threatening to be the upper ceiling for effective audio use.

The reason for this is that I’ve yet to knowingly come across a sequencer that can address more than 32 threads effectively for audio handling under ASIO. These chips offer 28 and 32 threads respectively as they are hyper-threaded, so unless something has changed at a software level that I’ve missed (and please contact me if so), then I suspect at this time the 16 core chip may well be well placed to max the current generation of sequencers.

Of course, when I get a moment and access to the larger chip, I’ll give it a proper look over to examine this in more depth, but for the time being on with the show!

Both chips this time around are advising a 165W TDP figure, which is up from the 140W TDP quoted back on the 7920X we looked at a month or two back. The TDP figure itself is supposed to be an estimate of the power usage under regular workloads, rather than peak performance under load. This helps to explain how a 14 core and 16 core chip can both share the same TDP rating, as the 14 core has a higher base clock than the 16 core to compensate. So in this instance, it appears that they have to some degree picked the TDP and worked backward to establish the highest performing, clocks at that given power profile point.

Once the system itself starts to push the turbo, or when you start to overclock the chip the power draw will start to rise quite rapidly. In this instance, I’m working with my normal air cooler of choice for this sort of system in the shape of the BeQuiet Dark Rock Pro 3 which is rated at 250W TDP.  Water-loop coolers or air coolers with more aggressive fan profiles will be able to take this further, but as is always a concern for studio users we have to consider the balancing of noise and performance too.

Much like the 7920X, we looked at previously, the chips are both rated to a 4.2GHz max two core turbo, with staggered clocks running slower on the other cores. I took a shot at running all cores at 4.2GHz but like the 7920X before it we could only hit that on a couple of cores before heat throttling would pull them back again. 

Just like the 7920X again however if we pull both of these chips back by 100MHz per core (in this instance both to 4.1GHz) they prove to be stable over hours of stress testing and certainly within the temp limits we like to see here, so with that in mind we’re going to test at this point as it’s certainly achievable as an everyday setting.

As always first up is the CPUid chip info page and benchmarks along with the Geekbench results.

Intel i9 7940X @ 4.1GHz

7940x CPUid 7940x CPUid Benchmark

Geekbench 7940x

Intel i9 7960X @ 4.1GHz

 

7960x CPUid7960x CPUid Benchmark

 

Geekbench 4 7960X

Both chips are clocked to the same level and the per-core score here reflects that. The multi-core score, of course, offers a leap from one chip to the other as you’d expect from throwing a few more cores into the equation.

Geekbench Comparison Chart
Click To Expand

The DAWBench classic and newer DSP test with Kontakt follow this and once again as there isn’t a whole lot I can add to this. 

DAWBench Classic
Click To Expand

 

7960x DB6
Click To Expand

The added cores give us improvements across both of these chips as we’ve already seen in the more general purpose tests. The 7960X does appear to offer a slightly better performance curve at the higher buffer rates, which I suspect could be attributed to the increase in the cache but otherwise, it all scales pretty much as we’d expect. 

Given the 7940X maintains the roughly £100 per extra core figure (when compared to the 7920X) at current pricing that Intel was aiming for at launch, it does seem to offer a similar sort of value proposition as the smaller i9’s just in this case more is more. The 7960X raises this to roughly £125 per core extra over the 7940X at current pricing, so a bit of cost creep there but certainly not as pricey as we’ve sometimes seen over the years on the higher end chips in the range.

The main concern initially was certainly regarding heat, but it looks like the continued refinement of the silicon since we saw the first i9 batches a few months ago has given them time to get ahead of this and ensure that the chips do well out of the box given adequate cooling.  

With the launch of the CoffeeLake’s in the midrange, some of the value of the lower end enthusiast chips appear to have quickly become questionable, but the i9 range above it continues to offer performance levels henceforth unseen by Intel. The’s a lot of performance here, although the price matches it accordingly and we often find ourselves at this time where more midrange level systems are good enough for the majority of users.

However, for the power user with more exhaustive requirements who find that they can still manage to leverage every last drop of power from any system they get their hands on,  I’m sure there will plenty here to peak your interest.

Previous CPU Benchmarking Coverage
3XS Systems @ Scan

The Intel i9 7920X On The Bench

Back in June this year we took a look at the first i9 CPU model with the launch of the i9 7900X. Intel has since followed on from that with the rest of the i9 chips receiving a paper launch back in late August and with the promise of those CPU’s making it into the publics hands shortly afterward. Since then we’ve  seen the first stock start to arrive with us here in Scan and we’ve now had a chance to sit down and test the first of this extended i9 range in the shape of the i9 7920X.

The CPU itself is 12 cores along with hyper-threading, offering us a total of 24 logical cores to play with. The base clock of the chip is 2.9GHz and a max turbo frequency of 4.30GHz with a reported 140W TDP which is much in line with the rest of the chips below it in the enthusiast range.  Running at that base clock speed the chip is 400MHz slower per core than the 10 core edition 7900X. So if you add up all the available cores running at those clock speeds (12 X 2900 vs 10 X 3300) and compare the two chips on paper, then the looks to be less than 2GHz total available overhead separating them but still in the 7920X’s favor. 

So looking at it that way, why would you pay the premium £200 for the 12 core? Well interestingly both CPU’s claim to be able to turbo to the same max clock rating of 4.3GHz, although it should be noted that turbo is designed to factor in power usage and heat generation too, so if your cooling isn’t up to the job then you shouldn’t expect it to be hitting such heady heights constantly and whilst I’m concerned that I may be sounding like a broken record by this point, as with all the high-end CPU releases this year you should be taking care with your cooling selection in order to ensure you get the maximum amount of performance from your chip.

Of course, the last thing we want to see is the power states throttling the chip in use and hampering our testing, so as always we’ve ensured decent cooling but aimed to keep the noise levels reasonable where we can. Normally we’d look to tweak it up to max turbo and lock it off, whilst keeping those temperatures in check and ensuring the system will be able to deliver a constant performance return for your needs.

However, in this case, I’ve not taken it quite all the way to the turbo max, choosing to keep it held back slightly at 4.2GHz across all cores. I was finding that the CPU would only ever bounce of 4.3GHz when left to work under its own optimized settings and on the sort of air cooling we tend to favour it wouldn’t quite maintain the 4.3GHz that was achieved with the 7900X in the last round of testing without occasionally throttling back. It will, however, do it on an AIO water loop cooler, although you’re adding another higher speed fan in that scenario and I didn’t feel the tradeoff was worth it personally, but certainly worth considering for anyone lucky to have a separate machine and control room where a bit more noise would go unnoticed.

Just as a note at this point, if you run it at stock and let it work its own turbo settings then you can expect an idle temperature around 40 degrees and under heavy load it still should be keeping it under 80 degrees on average which is acceptable and certainly better than we suspected around the time of the 7900X launch. However, I was seeing the P-states raising and dropping the core clock speeds in order to keep its power usage down and upon running Geekbench and comparing the results that my 4.2GHz on all cores setting gave us an additional 2000 points (around 7% increase) over the turbo to 4.3GHz default setting found in the stock configuration. My own temps idled in the 40’s and maxed around 85 degrees whilst running the torture tests for an afternoon, so for a few degrees more you can ensure that you get more constant performance from the setup.

Also worth noting is that we’ve had our CAD workstations up to around 4.5GHz and higher in a number of instances although in those instances we’re talking about a  full water loop and a number of extra fans to maintain stability under that sort of workload, which wouldn’t be ideal for users working in close proximity to a highly sensitive mic. 

Ok, so first up the CPUz information for the chip at hand, as well it’s Geelbench results.


7920X CPUz
CPUz 42Ghz bench7920X Geekbench 4

More importantly for this comparison is the Geekbench 4 results and to be frank it’s all pretty much where we’d expect it to be in this one.

7920X geekbench 4 Chart
Click to expand.

The single core score is down compared with the 7900X, but we’d expect this given the 4.2GHz clocking of the chip against the 4.3GHz 7900X. The multicore score is similarly up, but then we have a few more cores so all in all pretty much as expected here.

Dawbench DSP 7920X
Click to Expand
Dawbench 6
Click to Expand

On with the DAWBench tests and again, no real surprises here. I’d peg it at being around an average of 10% or so increase over the 7900X which given we’re just stacking more cores on the same chip design really shouldn’t surprise us at all. It’s a solid solution and certainly the highest benching we’ve seen so far barring the models due to land above it. Bang per buck it’s £1020 price tag when compared to the £900 for the 10 core edition it seems to perform well on the Intel price curve and it looks like the wider market situation has curbed some of the price points we might have otherwise seen these chips hit. 

And that’s the crux of it right now. Depending on your application and needs the are solutions from both sides that might fit you well. I’m not going to delve too far into discussing the value of the offerings that are currently available as prices do seem to be in flux to some degree with this generation. Initially, when it was listed we were discussing an estimated price of £100 per core and now we seem to be around £90 per core at the time of writing which seems to be a positive result for anyone wishing to pick one up.

Of course, the benchmarks should always be kept in mind along with that current pricing and it remains great to see continued healthy competition and I suspect with the further chips still to come this year, we may still see some additional movement before the market truly starts to settle after what really has been a release packed 12 months.

The 3XS Systems Selection @ Scan