Tag Archives: i7

Casting an eye over the Intel i7 Skylake X editions.

Following on from our first look at the i9 7900X, we’ve now had a chance to take a look over a few more interesting chips from this enthusiast class range refresh. 

We have before us today two more chips with the first being the i7 7800X which is the replacement for the older 6800K, once more offering us 6 physical cores with hyper-threading giving us a total of 12 logical cores to play with. It’s running a 3.5GHz base clock and features an all core turbo of 4GHz although being the 6 core it offers us the most potential to overclock we’ve seen within this range.

The second chip we have here is the 7820X and on paper it looks to be the most interesting one for me on this generation due to its price to performance ratio. Replacing the 6900K from the previous generation but coming in for around £350 less, this chip offers 2 more cores and a higher all core turbo rating along with a 1/3rd more cache than the 7800X edition.

For reference the current price at time of writing for the 7800X is £359 and the 7820X currently retails for £530.

I’m not going to go too much into the platform itself this time around, I gave some background to the changes made on this generation including possible strengths and flaws back in the i9 7900K first look over here. If you haven’t already checked that out and wish to bring yourself up to speed, now is the time to do so before we go any further.

Everyone up to speed? Then let us begin.

The Long Hot Summer

The first question I had from the off was one of how are these going to handle given the heat we saw with the 10 core? The quick answer is surprisingly well compared to the earlier testing we carried out. The retail releases I’ve been playing around with here are allowing us to drop the voltages on them to almost half the level that we expected to see with the previous generation and certainly a  few notches lower than we saw in the earlier testing we carried out.

So whilst I did hope for some marked improvements on the final release I didn’t quite expect to see it quite so quickly, normally these sorts of improvements take a few months of manufacturing refinement to appear and its great we’re seeing this right now. It certainly gives me some confidence that we’ll be seeing improvements across the range over the coming batches and I’m now far more confident that the larger i9’s that they have already announced should hold up well when they do finally arrive with us in the future.

 If I was to give a rough outline of the state of these Skylakes i7’s I’d say they are still running maybe 10% hotter than the last generation Broadwell-E clock for clock. However Intel has these designed to throttle at 105 degrees, essentially giving it 10% more overhead to play with so they do seem to be confident in these solutions running that much hotter in use over the longer term.

One thing I noted in testing was that we were seeing a lot of micro-fluctuations across the cores when load testing. By that I mean we’d see temperatures bouncing up and down by anything up to 6 or 7 degrees as we tested, but never on more than a core or two at the time and it would be pulled straight back down again moments later only for another core to fluctuate and so on.

Behind this is Intels new PCU (Package Control Unit) that has been added to Skylake X series, and whilst I did note the ability to turn it off inside of the BIOS by doing so we’d also see some additional rise in the temperatures with it disabled. One of the strengths of the PCU and these new P-States appears to be the ability to load manage well and it actively aims to offer the smoothest experience as far as power saving goes. It’s certainly welcome as it does seem to offer more control over the allocation of system performance and doesn’t appear to be causing the same sort of C-State issues we saw when that first appeared so this looks to be another welcome feature addition at this time.

Once again we’re seeing the same sort of 99% CPU load efficiency across the board as we saw when testing in Cubase on the 7900X. This I suspect is in no small part down to the board and CPU trying their hardest to strike that power to performance balance I mention above and is great to see.

Hit The Bench

On to the figures then and first up the standard synthetics in the shape of Geekbench 4 and the CPU-Z benchmark.

7800K CPU-Z 4 @ 4.4GHz

7800X CPUZ test

7800K Geekbench 4 @ 4.4GHz

Geekbench 4 7800K

The obvious comparison here it to line it up against the previous generations 6 core solution. The 6800K saw Geekbench single core scores in the region of 4400 and multi core scores around the 20500 mark, meaning that these results are sitting in the 10% – 15% increase range which is pretty much where we expect a new generation to be.

7820K CPU-Z 4 @ 4.3GHz

i7 7820X CPUz

7820K Geekbench 4 @ 4.3GHz

7820X Geek4

In a similar fashion we can take a look at the last generation 6900K which had a Geekbench score in the 4200 range and the multi-core was sitting around the 25000 level. Once again we’re looking at around a 10% gain in these synthetics, which is pretty much in line with what we’d expect.

Hold the DAW

So far, so expected and to be honest the isn’t any real surprises to be had here as we start with the DAWBench DSP test.

Skylake i7 Dawbench 4

With the 7800X can see small gains over the previous 6800K chip which is just short of the 10% mark so even perhaps just a little lower than we would have expected. In fact in this test the 7820X offers similar modest gains over the older 6900K model and doesn’t do much to surprise here us here either.

7900x DawbenchVi

The DAWbench VI test tells a similar story at the lowest buffer setting with the 7800X and 7820X both sitting roughly where we expect. What proves to be the one point of interest beyond this however is that both chips scale better than their previous iterations once you move up to the larger buffer sizes. Whilst testing these chips much like the high-end 7900K, we saw them managing to hit CPU loads around the 99% mark, but you can see that each chip scaled upwards with better results overall when compared not only with their previous edition but also when placed up against the chip above them in the previous range. 

We saw a similar pattern with the Ryzen chips too and their infinity fabric design is similar in practice mesh design found in the Skylake X CPU’s. The point of these newer mesh style designs are to improve data transference within the CPU and allow for improved performance scalability, so with both firms looking to be moving firmly in this direction we can expect to see further optimizations from software developers in the future that should continue to benefit both platforms moving forward.

Conclusion

Looking towards the future and the are already plenty of rumours already circulating regarding the expectation of a “Coffee Lake” refresh coming next. This includes a new mid-range flagship that is shaping up to offer us a contender against the 7800X and might prove to be an interesting option for anyone looking for a new system around that level, but doesn’t currently find themselves needing to pick up a new system right away.

Also we’re expecting Threadripper to arrive with us over the next few months which is no doubt the comparison that a lot of people will be waiting on. It’ll be interesting to see if the scaling characteristics that were first exhibited by Ryzen get translated across to this newer platform.  

The entry level enthusiast chips have long  proven to be the sweet spot for those seeking the best returns on the performance to value curve when considering Intel CPU’s.  This time around however whilst the 7800X is a solid chip in its own right, it’s looking like the the extra money for the 7820X  could well offer a stronger bang per buck option for those looking to invest in a system around this level. 

Click here to can see the full range of Scan 3XS Audio Systems

Intel Broadwell-E – The New Audio System CPU Of Choice?

In our first benchmark update of the year, we take a look at the Broadwell-E range, taking over as the new flagship Intel CPU range. Intel’s Enthusiast range has always proven to be a popular choice for audio systems, based around a more established and ultimately stable server chipset, whilst still letting you get away with the overclocking benefits founds on the mid-range solutions, making this range very popular in studios up and down the country.

The previous round of benchmarks can be found here and whilst handy to have to hand, you’ll notice that results that appear on the older chart when compared with newer results obtained found on our 2016 results chart show a marked improvement when the same chips are compared side by side.

A number of things have lead to this and can be explained by the various changes enacted since our last round up. Windows 10 is now the testing platform of choice, offering a marginal improvement over the older Windows 7 build, this along with new drivers and firmware for our Native Instruments KA6 which remains our testing tool of choice as well as a newly updated DAWBench suite, designed to allow us to be able to test these new chips as the first round of testing exceeded the older version of the test!

If you do wish to compare with the scores on the older chart, we’re seeing a roughly additional 20 tracks when comparing like for like chips across both set of results, so it’s possible that if you have a chip that is on the old chart and not the new, then you may be able to establish a rough comparison by simply adding 20 tracks on top of the old chip result to give you a very rough estimate to allow some degree of comparison.

Leaving behind the old results and in order to establish a level playing field, I’ve set out to retest some of the older chips under the new conditions in order to ensure these results are fair and to allow for easier comparison, so without any more delay, let’s check out those results.

2016 CPU DPC Test Results
2016 CPU DPC Test Results

As normal we’ll dive into this from the bottom upwards. At the low end of the testing round up we see the current i5 flagship, the 4 core 6600K both at stock and overclocked. A modest chip and certainly where we’d suggest the absolute lowest point of entry is when considering an audio setup. Offering enough power for multi-tracking and editing, and whilst we wouldn’t suggest that it would be the ideal solution for anyone working fully in the box as this CPU would be likely to be easily maxed out by high performance synths, the is certainly enough power here to achieve basic studio recording and editing tasks whilst not breaking the bank.

Next up are the mid-range i7’s and the 6700T is first up, offering 4 cores and 8 threads this is the low power i7 option this time around and sits as you would expect between the i5 6600K and the full power 6700K. It’s performance isn’t going to set the world on fire, but it’s certainly hitting performance levels that we would have expected from a mid-range class leading 2600K a few years back, but with a far lower power usage profile. This is a chip that certainly has its place and we expect it to be well received in our passive silent specs and other small form factor systems.
The other 6700 variant we have here is the all singing, all dancing 6700K which is the current consumer flagship offering a unlocked and overclockable 4 core / 8 thread configuration. Popular in home recording setups and certainly a reasonable all-rounder its price to performance makes it a great fit for anyone looking to edit, process and mix audio, whilst not relying upon extremely CPU intensive plugins and other tools.

But what if you are? What if Diva and Serum and their ilk are your tools of choice, and CPU’s are regularly chewed up and spat out for breakfast?

Well then, the enthusiast range is the choice for you. Popular for just this reason, the chart outlines the amount of extra overhead these CPU’s can offer you above and beyond the performance found in the mid-range.

The 5820K and 5960X scores you see are the previous generations 6 core and 8 core flagship solutions respectively and certainly the ones to beat by our new entries.

The 6800K is another 6 core CPU along with the 6850K which isn’t shown here which directly replaces the last generation 5930K. As with the last generation, the key difference between the 6800K and 6850K other than the few hundred more MHz which don’t really offer much of an improvement as far as benchmarks go, is the additional PCIe lanes on offer with the more expensive chip. For roughly 50% more over the 28 lane 6800K edition, the 6850K offers up a total of PCIe lanes making it ideal for systems running multiple graphics cards, which may require up to 16 lanes each. For audio systems that only have a single graphics card however, the 28 lane chip will be more than adequate for most users and is certainly one place you can afford to cut corners an save money in the event that you’re not working with multiple graphics cards. All this as well as the keen price when considered against the performance found in the 6700K below it, perhaps makes the 6800K the best bang per buck option at this time.

The 6900K is a 8 core / 16 thread direct replacement for the last generation flagship 5960X chip and offers a sizable performance increase over the older CPU for roughly the same price. Not ground breaking but certainly an improvement for any outlay if you were considering the options around this price point.

Topping off the chart is the new high-end flagship 6950X which offers previously unseen levels of performance from the enthusiast class CPU’s and certainly offers reasonable performance for your money when compared against the dual Xeon setups that compete with it. With a £1400 UK street price at the time of writing it may appear to offer poor value when put up against the £500 cheaper 6900K, the is little else to touch this CPU for its price if you find yourself in need of the performance it is capable of offering.

Looking to the future the next high-end refresh will be Skylake-E although that isn’t due to be with us until sometime around the middle of 2017. KabyLake around the same time next year in the midrange promises some interesting features, namely X-point and the advances it’ll bring for storage which may even appear (we hope!) in the Skylake-E chipset around the same time. Either way you look at it, Broadwell-E is looking to be the high performance option of choice for the rest of 2016 and we’re sure will find itself powering many new studio systems over the coming year.

Scan 3XS Audio Workstations

Scan 3XS Audio Laptops

Scan Ready To Ship Audio Workstations

DAW Benchmarks 2013 – What gives you the best performance for audio applications?

It’s been a good year or so now since we’ve managed to do a proper group testing session here in office on the system side of things and with the launch of a new processor selection it often raises any number of questions regarding upgrading or even replacing older setups with the newer chipset solutions. With the launch of Intel’s new Haswell CPU’s over the weekend and rumors reaching us of AMD’s latest CPU’s getting a solid performance boost it looks to be the ideal time to carry out a round up.

During that time however the team over at DAWBench have updated and refined the basic test to allow for the performance heights that the new chips are reaching to be more easily measured. The new test doesn’t scale in quite the same fashion as the older version, so this time around it has required us to perform a full group retest to ensure everything is as accurate as possible on the chart, meaning that a number of older systems have dropped off the testing list due to the lack of available hardware or incompatibility with the newer testing environment.

The other change of note this time around is with the interface being used by us for the task itself. In the past we used an internal RME card up until the point where external interface solutions became more common place, where we retired it and moved onto the Firewire budget champ in the shape of M-Audio 1614FW for our comparative testing. Over the last few years however Firewire support has waned and so it now makes sense for us to move onto a more everyday solution and one that is within easy reach of the average user.

So with that in mind we welcome to the testing bench the USB based Native Instruments Komplete Audio 6 interface which itself weighs in at under £200 and should give a fair indication of what can be achieved by anyone with a good basic interface. Of course if you have invested in a more premium solution these scores will most likely be even better in your final setup but we hope to give people here a general idea on what can be achieved on the average DAW setup.

So without further ado, on with the stats!

(click to expand the chart)

System DAWBench Chart June 2013
System DAWBench Chart June 2013

You can click to expend the chart above and it gives us the testing results for the classic DAWBench RXC compressor test. The test puts a load on the CPU by letting us add compressor instances until the ASIO routine fails to cope and the audio breaks up.

The first thing to note is down the bottom of the chart and AMD’s inclusion on the list. It’s the first time in a few generations now where we’ve seen a AMD chip hold it’s own in the benchmarking round up and overall it has to be said as a entry level solution it could have some legs. Pulling roughly the same benchmark results as the first generation i7 solutions when dealing with audio means that it offers a solid platform to work on for a price point somewhere in the £230 region for the chip and board.

When doing the system math’s however for roughly 1/3rd more on the motherboard & CPU price you can have a i5 4670 Intel CPU and board which will give you roughly a 1/3rd more performance so the bang per buck in both setups is roughly the same at where we would choose to peg the entry level positions. It could however be argued that another £70 on what will likely be a £700 costing machine wouldn’t break the bank and could be a very worthwhile move in the long term as that 1/3rd more performance will more than likely come in handy further down the road and should be part of the consideration.

Looking further up the range we see the comparisons between the 4670K & 4770K CPU’s and their predecessors which were the chips of choice at their respective performance points in previous generations. The 4670K is another unlocked i5 solution offering 4 cores whilst the 4770K is the direct replacement for 3770K midrange champion offering up the same 4 cores +4 cores of hyperthreading that have been available in the previous generations.

For ease of comparison we  made sure to test the key chips at both stock settings and with a fairly average overclock applied so you can see how they scale with the extra clock speed boost being applied. Even through the CPU’s don’t appear to overclock quite as far this time around we do see a fairly level increase in performance at around the 5% – 7% across the board when examining like for like CPU’s meaning that whilst not major game changers they do offer a step up on the previous generation.

Regarding the chipset itself the big push this time by Intel has been the improvement of power saving features within the chipset and on the CPU itself. The inclusion of more C states which allow the PC to pretty much shut everything off when it conserves power is likely to be another major headache for audio system builders both pro and amateur alike so keep an eye on those and give them some consideration when tweaking up your rigs.

The CPU microarchitecture has also been worked upon and whilst a lot of the changes are a bit more technical than we’d want to go into on article focused on audio applications, the expansion to the AVX2 instruction set may yield us further improvements in performance if software developers can make use of the improvements implemented in the Haswell release further along the line. We don’t expect it to be a quick process as it doesn’t make sense to focus on instruction tuning until it is supported by both Intel and AMD but we expect that to happen over the course of the coming year and once it does software companies often start to make use of the features in major updates which could be a nice benefit to those adopting the platform.

Other benefits for adopters of the new platform include an increase of USB 3.0 ports available natively in the chipset (6 rather than the previous 4) and more Sata 6Gps ports which now total 6 natively over the previous generations 2 port solutions.

So where does that leave us? Not much different from before the launch of the new CPU’s with performance scaling with cost right up to the hexcore 3930K chips on a pretty reasonable cost to performance curve. The current highend extreme in the shape 3970X however continues to break that curve rather abruptly although this is something most users have come to expect and thankfully it is only the most demanding of users that will even need to consider that solution as the rest of the range offers a lot of performance which will satisfy the vast majority of current requirements.

The future promises us a new high end platform later in the year in the shape of IvyBridge extreme, although details and release dates are still very hazy we’re looking forward to getting to grips with those when they do eventually land. Right now through the Haswell solutions offer a great upgrade for any users  of the first generation i series CPU’s (the 4th generation 4770k offers twice the performance in benchmarking of a first generation i7 920) or earlier solutions and continue to dominate their respective price points in the performance stakes.

DAW Systems @ Scan